Premium partners
categories

30 October 2017
New method helps fighting future pandemics

Photo: NIAID

By developing a new technique for labeling the influenza virus gene segments, researchers now know more about how influenza viruses enter cells and establish cell co-infections – a major contributing factor to the development of potential pandemic strains. 

Seasonal influenza A and B viruses are estimated to cause 3-5 million cases of severe illness each year. While the available vaccines provide coverage against these two types, influenza viruses are constantly evolving, which requires that vaccines are designed to match the current circulating variants of the virus.

Influenza viruses evolve by acquiring mutations in the viral genome or by a process called reassortment. Reassortment, which was responsible for the 2009 pandemic virus, occurs when one or more of the eight genome segments are exchanged between two different influenza viruses.

With current techniques it is not easy to make comparative analysis of influenza viruses with single mutations in their genomes, and it is extremely difficult to identify factors that limit the reassortment process between two influenza genomes in the same cell. Through a collaborative effort, scientists from Stockholm University, SciLifeLab, Karolinska Institute and the Leibniz Institute developed a procedure to analyze influenza virus infections in cells and lung tissue by labeling and visualizing the viral genome.

The labeling specificity enabled the researchers to visualize the delivery of the eight influenza genome segments to the cell nucleus where the virus replicates, and to analyze co-infections by two influenza viruses that differed by single mutations. Using this technique, the researchers concluded that productive cell co-infections, which are necessary for reassortment, only occur when both viruses enter the same cell within two hours.

This unique approach will make it easier to evaluate how new mutations affect influenza pathogenicity and help to identify properties that enable or restrict influenza gene segment reassortment, which can help the community predict the possibility of two strains reassorting into a potential pandemic virus. While further investigation is needed to  reach these goals, the current approach can already help to characterize and assess treatments aimed at inhibiting influenza virus entry into cells. Through additional improvements the technique also has potential diagnostic applications for identifying influenza virus infections as well as many other pathogens.

Reference: Analysis of IAV Replication and Co-infection Dynamics by a Versatile RNA Viral Genome Labeling Method

Written By
Popular
Health
14 June 2016
Studies of physical activity in the Swedish population
Society
27 July 2017
Women’s labor market integration as the core of the Swedish welfare state
Medicine
2 May 2017
Hearing loss makes your brain work overtime
Written By
Popular
Health
14 June 2016
Studies of physical activity in the Swedish population
Society
27 July 2017
Women’s labor market integration as the core of the Swedish welfare state
Medicine
2 May 2017
Hearing loss makes your brain work overtime
Related Articles